3D QSAR pharmacophore based lead identification of G9a lysine methyltransferase towards epigenetic therapeutics.

Journal of biomolecular structure & dynamics(2022)

引用 3|浏览4
暂无评分
摘要
The G9a, Lysine Methyltransferase that methylates the histone 3 lysine 9 (H3K9) of the nucleosome, is an excellent epigenetic target having no clinically passed inhibitor currently owing to adverse in vivo ADMET toxicities. In this work, we have carried out detailed computational investigations to find novel and safer lead against the target using advanced 3 D QSAR pharmacophore screening of databases containing more than 400000 entrees of natural compounds. The screening was conducted at different levels at increasing stringencies by employing pharmacophore mapping, druglikenesses and interaction profiles of the selected to identify potential hit compounds. The potential hits were further screened by advanced flexible docking, ADME and toxicity analysis to eight hit compounds. Based on the comparative analysis of the hits with the reference inhibitor, we identified one lead inhibitor against the G9a, having better binding efficacy and a safer ADMET profile than the reference inhibitor. Finally, the results were further verified using robust molecular dynamics simulation and MM-GBSA binding energy calculation. The natural compounds are generally considered benign due to their long human uses and this is the first attempt of screening of a large natural compound library against G9a to our best knowledge. Therefore, the finding of this study may add value towards the development of epigenetic therapeutics against the G9a.
更多
查看译文
关键词
ADMET,Cancer,Chromatin,Histone PTM,MD Simulation,Molecular docking,QSAR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要