The mitochondrial inhibitor IF1 of F1Fo ATP synthase protects cancer cells from permeability transition-dependent apoptosis

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS(2022)

引用 0|浏览6
暂无评分
摘要
Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins, which then aggregate extracellularly as insoluble fibrils, damaging the structure and function of affected organs. The formation of amyloid fibrils in vivo is poorly understood. We recently identified the first naturally occurring structural variant, D76N, of human β2-microglobulin (β2m), the ubiquitous light chain of class I major histocompatibility antigens, as the amyloid fibril protein in a family with a new phenotype of late onset fatal hereditary systemic amyloidosis. Here we show that, uniquely, D76N β2m readily forms amyloid fibrils in vitro under physiological extracellular conditions. The globular native fold transition to the fibrillar state is primed by exposure to a hydrophobic-hydrophilic interface under physiological intensity shear flow. Wild type β2m is recruited by the variant into amyloid fibrils in vitro but is absent from amyloid deposited in vivo. This may be because, as we show here, such recruitment is inhibited by chaperone activity. Our results suggest general mechanistic principles of in vivo amyloid fibrillogenesis by globular proteins, a previously obscure process. Elucidation of this crucial causative event in clinical amyloidosis should also help to explain the hitherto mysterious timing and location of amyloid deposition.Background: We recently discovered the first natural human β2-microglobulin variant, D76N, as an amyloidogenic protein.Results: Fluid flow on hydrophobic surfaces triggers its amyloid fibrillogenesis. The α-crystallin chaperone inhibits variant-mediated co-aggregation of wild type β2-microglobulin.Conclusion: These mechanisms likely reflect in vivo amyloidogenesis by globular proteins in general.Significance: Our results elucidate the molecular pathophysiology of amyloid deposition.
更多
查看译文
关键词
f1fo atp synthase,mitochondrial inhibitor if1,apoptosis,transition-dependent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要