Microstructure and Mechanical Properties of Ni-Based Complex Concentrated Alloys under Radiation Environment

CRYSTALS(2022)

引用 2|浏览1
暂无评分
摘要
The rapid development of fusion-reactor technology calls for excellent anti-irradiation materials. Complex concentrated alloy (CCA) is a newly proposed alloy concept which is a promising candidate of nuclear fusion materials by virtue of its great phase stability under irradiation. This article summarizes anti-radiation mechanism and the microstructure evolution in HEAs. The effective factors on irradiation behavior of HEAs, including entropy, sample size and temperature, are discussed. Finally, the article introduces the potential ways to solve the economic and environmental problems which the HEAs faced for their applications in the future. In summary, the HEAs usually show better irradiation resistance than traditional alloys, such as less swelling, smaller size of defects, and more stable mechanical properties. One possible reason for the irradiation resistance of HEA is the self-healing effect induced by the high-entropy and atomic-level stress among the metal atoms. The activation of the principal element should be considered when selecting components of HEA, and the high throughput technique is a potential way to reduce the design and fabrication cost of HEAs. It is reasonable to expect that coming years will see the application of novel HEAs in fusion reactors.
更多
查看译文
关键词
high-entropy alloy, irradiation resistance, mechanical property, fusion reactor materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要