Synthesis, microstructure and mechanical properties of lamellar YB2C2 – based ultra-high temperature ceramic composites

Journal of the European Ceramic Society(2023)

引用 3|浏览18
暂无评分
摘要
A significant improvement of the mechanical performance was observed following the introduction of rare earth oxides in ZrB2-based ultra-high temperature ceramic matrix composites (UHTCMCs), resulting in the formation of ternary boro-carbides of general formula REB2C2, belonging to a new class of layered compounds akin to MAX phases. These layered phases possess high melting points and could be responsible for the toughening of UHTCMCs, but their formation, properties and role were never fully investigated. In this study we focused on the potential routes for the synthesis of YB2C2 phases at temperatures typical of UHTC sintering, starting from Y2O3, carbon and four different boron sources (B, B2O3, BN, B4C) and their microstructure was analysed by SEM, XRD and TEM. The mixture with B4C led to the highest selectivity towards the formation of YB2C2 and was selected to fabricate a long carbon fibre reinforced YB2C2 ceramic composite, which was mechanically tested displaying a flexural strength of 380 MPa. Finally, the chemical stability in air of these materials was assessed.
更多
查看译文
关键词
Ceramic-Matrix Composites (CMCs),Ultra-High-Temperature-Ceramics (UHTCs),Rare Earth oxides,Microstructure,Mechanical Properties,Powder Synthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要