Chrome Extension
WeChat Mini Program
Use on ChatGLM

Plastic Response of Leaf Traits to N Deficiency in Field-Grown Maize

AoB plants(2022)

Cited 0|Views8
No score
Abstract
Abstract Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN) important for radiation-use efficiency versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a 10-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N deficiency (N0), low N supply (N1) and high N supply (N2). We analysed data from years 8 and 10 of this experiment for two common hybrids. Under N deficiency, maize plants maintained LA and decreased SLN during vegetative stages, while both LA and SLN decreased comparably during reproductive stages. Canopy SLA (specific leaf area, cm2 g–1) decreased sharply during vegetative stages and slightly during reproductive stages, mainly because senesced leaves in the lower canopy had a higher SLA. In the vegetative stage, maize maintained LA at low N by maintaining leaf biomass (albeit hence having N content/mass) and slightly increasing SLA. These responses to N deficiency were stronger in maize hybrid XY335 than in ZD958. We conclude that the main strategy of maize to cope with low N is to maintain LA, mainly by increasing SLA throughout the plant but only during the vegetative growth phase.
More
Translated text
Key words
Leaf area,leaf N content per unit leaf area,maize strategy,N deficiency,N management practices,specific leaf area
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined