Tunable Terahertz Wavefront Modulation Based on Phase Change Materials Embedded in Metasurface

NANOMATERIALS(2022)

引用 1|浏览4
暂无评分
摘要
In the past decades, metasurfaces have shown their extraordinary abilities on manipulating the wavefront of electromagnetic wave. Based on the ability, various kinds of metasurfaces are designed to realize new functional metadevices based on wavefront manipulations, such as anomalous beam steering, focus metalens, vortex beams generator, and holographic imaging. However, most of the previously proposed designs based on metasurfaces are fixed once design, which is limited for applications where light modulation needs to be tunable. In this paper, we proposed a design for THz tunable wavefront manipulation achieved by the combination of plasmonic metasurface and phase change materials (PCMs) in THz region. Here, we designed a metal-insulator-metal (MIM) metasurface with the typical C-shape split ring resonator (CSRR), whose polarization conversion efficiency is nearly 90% for circular polarized light (CPL) in the range of 0.95 similar to 1.15 THz when PCM is in the amorphous state, but the conversion efficiency turns to less than 10% in the same frequency range when PCM switches into the crystalline state. Then, benefiting from the high polarization conversion contrast of unit cell, we can achieve tunable wavefront manipulation by utilizing the Pancharatnam-Berry (PB) phase between the amorphous and crystalline states. As a proof-of-concept, the reflective tunable anomalous beam deflector and focusing metalens are designed and characterized, and the results further verify their capability for tunable wavefront manipulation in THz range. It is believed that the design in our work may pave the way toward the tunable wavefront manipulation of THz waves and is potential for dynamic tunable THz devices.
更多
查看译文
关键词
metasurfaces, phase change materials, terahertz (THz) region, PB phase, tunable wavefront manipulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要