High-performance mode decomposition using physics- and data-driven deep learning.

Optics express(2022)

引用 1|浏览1
暂无评分
摘要
A novel physics- and data-driven deep-learning (PDDL) method is proposed to execute complete mode decomposition (MD) for few-mode fibers (FMFs). The PDDL scheme underlies using the embedded beam propagation model of FMF to guide the neural network (NN) to learn the essential physical features and eliminate unexpected features that conflict with the physical laws. It can greatly enhance the NN's robustness, adaptability, and generalization ability in MD. In the case of obtaining the real modal weights (ρ2) and relative phases (θ), the PDDL method is investigated both in theory and experiment. Numerical results show that the PDDL scheme eliminates the generalization defect of traditional DL-based MD and the error fluctuation is alleviated. Compared with the DL-based MD, in the 8-mode case, the errors of ρ2 and θ can be reduced by 12 times and 100 times for beam patterns that differ greatly from the training dataset. Moreover, the PDDL maintains high accuracy even in the 8-mode MD case with a practical maximum noise factor of 0.12. In terms of adaptation, with a large variation of the core radius and NA of the FMF, the error keeps lower than 0.43% and 2.08% for ρ2 and θ, respectively without regenerating new dataset and retraining NN. The experimental configuration is set up and verifies the accuracy of the PDDL-based MD. Results show that the correlation factor of the real and reconstructed beam patterns is higher than 98%. The proposed MD-scheme shows much potential in the application of practical modal coupling characterization and laser beam quality analysis.
更多
查看译文
关键词
mode,deep learning,decomposition,high-performance,data-driven
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要