A Comprehensive Analytical Model for Vortex Shedding From Low-Speed Axial Fan Blades

Volume 5: Education; Electric Power; Fans and Blowers(2022)

引用 0|浏览3
暂无评分
摘要
Abstract The paper presents a comprehensive analytical model for the characterization of von Karman vortex shedding in the wake of models of low-speed axial fan blades. The elaborated minimal model is based on the Reynolds-averaged Navier-Stokes and continuity equations. For validation purposes, hot-wire measurements have been carried out in a wind tunnel on representative blade profiles. The measurement data obtained for various streamwise positions downstream of the blade trailing edge, i.e. transversal profiles of mean velocity as well as root-mean-square of fluctuating velocity, are evaluated. As the experimental validation demonstrates, the minimal model fairly localizes the transversal position of the vortex centres, and represents the motion of the vortices along the wake. The validated minimal model serves with the following benefits. a) An extensive understanding of the underlying physics related to the flow field featuring vortex shedding in the near-wake region. Easy-to-use quantitative correlation among the characteristics of wake flow affected by the shed vortices. b) Extension of the literature-based methodology for determination of the transversal distance between the shed vortex rows, being used as scaling parameter for the Strouhal number utilized in calculation of vortex shedding frequency. c) Modelling the behavior of rows of shed vortices farther away from the trailing edge. Such behavior may influence the acoustic signature of VS, and, as such, it is to be considered in fan noise modelling.
更多
查看译文
关键词
fan, compressor, and turbine aerodynamic design, measurement techniques
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要