谷歌浏览器插件
订阅小程序
在清言上使用

Evaluation of three novel soil bacterial strains for efficient biodegradation of persistent boscalid fungicide: Kinetics and identification of microbial biodegradation intermediates

ENVIRONMENTAL POLLUTION(2023)

引用 4|浏览14
暂无评分
摘要
Boscalid, a new fungicide of anilide group, is intended to prevent and treat grey mould (Botrytis cinerea), primarily in vines and other fruit plants. In many regions, its long half-life in soil and water poses a serious environmental threat. Boscalid is reported to be toxic to a variety of aquatic organisms. One of the best ways to lessen the amount of boscalid that gets into surface and ground waters is to reduce its concentration in soil. Soil microbes are crucial for the degradation of organic pollutants including pesticides. The present study reports the assessment of three novel soil bacterial strains isolated from pesticide-contaminated soil of Crop research centre, Pantnagar, Uttarakhand, India, which possess boscalid degradation ability. Two of these bacterial isolates could degrade boscalid up to 85-95% within 36 h of incubation period under shaking conditions in the minimal medium. The growth pattern of degrading bacterial isolates was monitored by recording the optical density (OD) of bacterial suspension using an ultra violet (UV)-visible spectrophotometer, whereas the concentration of primary boscalid was recorded by High-Performance Liquid Chromatography (HPLC-UV). A linear relationship was observed between the bacterial growth and the decrease in the residual concentration of boscalid. The concentration of boscalid during incubation with different bacterial strains could be best predicted by a second-order polynomial relationship with time and OD of the suspension as independent variables. Three degradation intermediates of boscalid namely, N-(1,1'-biphenyl-2-yl)pyridine-3-carboxamide (C18H14N2O, N-{[1,1'-biphenyl]-2-yl}-2-chloropyridine-3-carboxamide (C18H13N2OCl), and N-{[4'-chloro-1,1'-biphenyl]-2-yl}-2-chloropyridine ({C17H11NCl2}OH) were identified by the liquid chromatography-mass spectrometry (LC-MS) analysis of biodegraded samples. The biodegradation of boscalid through bacterial isolates seemed to be an economical and eco-friendly method for degrading a highly persistent boscalid fungicide.
更多
查看译文
关键词
Boscalid,Bacteria,Biodegradation,Kinetics,Metabolites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要