谷歌浏览器插件
订阅小程序
在清言上使用

Satellite-Observed Time and Length Scales of Global Sea Surface Salinity Variability: A Comparison of Three Satellite Missions

REMOTE SENSING(2022)

引用 0|浏览7
暂无评分
摘要
Sea surface salinity (SSS) observations from Aquarius, Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture Active Passive (SMAP) satellite missions are compared to characterize the time and length scales of SSS variability globally. Overall, there is general agreement between the global patterns of the time and length scales of SSS variability estimated from the three satellite missions. The temporal scales of SSS variability vary from more than 90 days in the tropics to similar to 15 days in the Southern Ocean. The very short temporal scales (close to the Nyquist period) in some parts of the ocean are probably due to the high level of noise in the satellite data or the high noise-to-signal ratio. The longest temporal scales are observed along the South Pacific Convergence Zone (SPCZ) and in the central and western tropical Pacific. These areas are also related to the strongest ENSO-related signal in SSS. The processes governing the SSS variability and distribution are also non-stationary, such that the scales determined over different observation periods may differ. Dominant spatial scales of SSS variability are generally the longest (up to 150 km) in the tropics and the shortest (<60 km) in the subpolar regions. The distribution of the dominant spatial scales is not simply latitudinal but exhibits a more complex spatial pattern. In the tropics, there is slight east-west and inter-hemispheric asymmetry observed in the Pacific but absent in the other two oceans. The analysis also reveals that the length scales of SSS variability are highly anisotropic in the tropics (the zonal scales are generally shorter than the meridional ones) and become more isotropic towards higher latitudes. Regional differences in the estimates of the scales from the three satellite SSS datasets may arise due to differences in the observation duration, spatial resolution and/or different level of noise.
更多
查看译文
关键词
sea surface salinity,decorrelation scale,Aquarius,SMAP,SMOS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要