谷歌浏览器插件
订阅小程序
在清言上使用

Biochar application as a soil potassium management strategy: A review

Science of The Total Environment(2023)

引用 19|浏览45
暂无评分
摘要
The established practices of intensive agriculture, combined with inadequate soil Κ replenishment by conventional inorganic fertilization, results in a negative environmental impact through the gradual exhaustion of different forms of K reserves in soils. Although biochar application as soil amendment has been established as an approach of integrated nutrient management, few works have focused on the impact of biochar application to soil K availability and crop uptake. This review provides an up-to-date analysis of the published literature, focusing on the impact of biochar in the availability of potassium in soil and crop growth. First, the effect of biomass type and pyrolysis temperature on potassium content of biochar was assessed. Second, the influence of biochar addition to the availability of potassium in soil and on potassium soil dynamics was examined. Finally, alternative methods for estimating available K in soils were proposed. The most promising biomasses in terms of potassium content were grape pomace, coffee husk and hazelnut husk however, these have not been widely utilized for biochar production. Higher pyrolysis temperatures (>500 °C) increase the total potassium content whereas lower temperatures increase the water-soluble and exchangeable potassium fractions. It was also determined that biochar has considerable potential for enhancing K availability through several distinct mechanisms which eventually lead directly or indirectly to increased K uptake by plants. Indirect mechanisms mainly include increased K retention capacity based on biochar properties such as high cation exchange capacity, porosity, and specific surface area, while the direct supply of K can be provided by K-rich biochar sources through purpose-made biochar production techniques. Research based on biochar applications for soil K fertility purposes is still at an early stage, therefore future work should focus on elucidating the mechanisms that define K retention and release processes through the complicated soil-biochar-plant system.
更多
查看译文
关键词
Biomass,Potassium availability,Soil fertility,Integrated nutrient management,Crop production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要