Robust Second-Order Topological Insulators with Giant Valley Polarization in Two-Dimensional Honeycomb Ferromagnets

NANO LETTERS(2022)

引用 7|浏览1
暂无评分
摘要
Magnetic topological states have attracted great attention that provide exciting platforms for exploring prominent physical phenomena and applications of topological spintronics. Here, using a tight-binding model and first-principles calculations, we put forward that, in contrast to previously reported magnetic second-order topological insulators (SOTIs), robust SOTIs can emerge in two-dimensional ferromagnets regardless of magnetization directions. Remarkably, we identify intrinsic ferromagnetic 2H-RuCl2 and Janus VSSe monolayers as experimentally feasible candidates of predicted robust SOTIs with the emergence of nontrivial corner states along different magnetization directions. Moreover, under out-of-plane magnetization, we unexpectedly point out that the valley polarization of SOTIs can be huge and much larger than that of the known ferrovalley materials, opening up a technological avenue to bridge the valleytronics and higher-order topology with high possibility of innovative applications in topological spintronics and valleytronics.
更多
查看译文
关键词
magnetic topological states,second-order topological insulators,valleytronics,two-dimensional materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要