A Sensitive GC-MS Method for Quantitation of Lipid A Backbone Components and Terminal Phosphate Modifications.

Journal of the American Society for Mass Spectrometry(2022)

引用 0|浏览11
暂无评分
摘要
Lipid A, the hydrophobic anchor of lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria, serves as a target for cationic antimicrobial peptides, such as polymyxins. Membrane stress from polymyxins results in activation of two-component regulatory systems that produce lipid A modifying enzymes. These enzymes add neutral moieties, such as aminoarabinose (AraN) and ethanolamine (EtN) to lipid A terminal phosphates that mask the phosphate's negative charge and inhibit electrostatic interaction with the cationic polymyxins. Currently, these modifications may be detected by MALDI-TOF MS; however, this analysis is only semiquantitative. Herein we describe a GC-MS method to quantitate lipid A backbone components, glucosamine (GlcN) and inorganic phosphate (Pi), along with terminal phosphate modifications AraN and EtN. In this assay, lipid A is isolated from Gram-negative bacterial samples, hydrolyzed into its individual moieties, and derivatized via methoximation followed by silylation prior to analysis via GC-MS. Changes in AraN and EtN quantity were characterized using a variety of regulatory mutants of , revealing differences that were not detected using MALDI-TOF MS analysis. Additionally, an increase in the abundance of AraN and EtN modifications were observed when resistant and strains were grown in the presence of colistin (polymyxin E). Lastly, increased levels of Pi were found in bisphosphorylated lipid A compared to monophosphorylated lipid A samples. Because lipid A modifications serve as indicators of polymyxin resistance in Gram-negative bacteria, this method provides the capacity to monitor polymyxin resistance by quantification of lipid A modification using GC-MS.
更多
查看译文
关键词
phosphate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要