谷歌浏览器插件
订阅小程序
在清言上使用

High performance flexible and antibacterial strain sensor based on silver‑carbon nanotubes coated cellulose/polyurethane nanofibrous membrane: Cellulose as reinforcing polymer blend and polydopamine as compatibilizer.

International journal of biological macromolecules(2022)

引用 8|浏览11
暂无评分
摘要
In this study, ethyl cellulose was used as the second-phase polymer blended with polyurethane to make nanofibrous membrane as antibacterial strain sensor. The results indicated that ethyl cellulose could regulate the morphology of polyurethane through strong hydrogen bonding, which observably enhanced the nanofiber uniformity of polyurethane. Furthermore, rigid cellulose also remarkably improved the mechanical strength and thermal stability of the nanofibrous membrane. After being coated with silver nanoparticles and carbon nanotubes assisted by polydopamine (PDA), the membrane with outstanding bacteria inhibition performance exhibited outstanding sensitivity toward external mechanical stretching, as well as real-time motion of human body parts. The conductive composite membrane possessed sensitive and regular resistance feedback to 100 cycles of varied human motions. The cellulose in the nanofiber structure ensured the shape recovery and longtime use stability of the membrane. This study proposed a novel thinking for the construction of high performance strain sensor by rational introduction of rigid polysaccharide into the polymer matrix.
更多
查看译文
关键词
Actibacterial strain sensor,Cellulose,Polydopamine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要