Sharp dose profiles for high precision proton therapy using strongly focused proton beams

Scientific reports(2022)

引用 2|浏览4
暂无评分
摘要
The main objective of radiotherapy is to exploit the curative potential of ionizing radiation while inflicting minimal radiation-induced damage to healthy tissue and sensitive organs. Proton beam therapy has been developed to irradiate the tumor with higher precision and dose conformity compared to conventional X-ray irradiation. The dose conformity of this treatment modality may be further improved if narrower proton beams are used. Still, this is limited by multiple Coulomb scattering of protons through tissue. The primary aim of this work was to develop techniques to produce narrow proton beams and investigate the resulting dose profiles. We introduced and assessed three different proton beam shaping techniques: (1) metal collimators (100/150 MeV), (2) focusing of conventional- (100/150 MeV), and (3) focusing of high-energy (350 MeV, shoot-through) proton beams. Focusing was governed by the initial value of the Twiss parameter α ( α _0 ), and can be implemented with magnetic particle accelerator optics. The dose distributions in water were calculated by Monte Carlo simulations using Geant4, and evaluated by target to surface dose ratio (TSDR) in addition to the transverse beam size ( σ _T ) at the target. The target was defined as the location of the Bragg peak or the focal point. The different techniques showed greatly differing dose profiles, where focusing gave pronouncedly higher relative target dose and efficient use of primary protons. Metal collimators with radii < 2 mm gave low TSDRs ( < 0.7 ) and large σ _T ( > 3.6 mm ). In contrast, a focused beam of conventional ( 150 MeV ) energy produced a very high TSDR ( > 80 ) with similar σ _T as a collimated beam. High-energy focused beams were able to produce TSDRs > 100 and σ _T around 1.5 mm. From this study, it appears very attractive to implement magnetically focused proton beams in radiotherapy of small lesions or tumors in close vicinity to healthy organs at risk. This can also lead to a paradigm change in spatially fractionated radiotherapy. Magnetic focusing would facilitate FLASH irradiation due to low losses of primary protons.
更多
查看译文
关键词
Applied physics,Particle physics,Plasma-based accelerators,Radiotherapy,Techniques and instrumentation,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要