Genomic control of inflammation in experimental atopic dermatitis

Scientific reports(2022)

引用 2|浏览16
暂无评分
摘要
Atopic Dermatitis (AD) or eczema, a recurrent allergic inflammation of the skin, afflicts 10–20% of children and 5% adults of all racial and ethnic groups globally. We report a new topical treatment of AD by a Nuclear Transport Checkpoint Inhibitor (NTCI), which targets two nuclear transport shuttles, importin α5 and importin β1. In the preclinical model of AD, induced by the active vitamin D 3 analog MC903 (calcipotriol), NTCI suppressed the expression of keratinocyte-derived cytokine, Thymic Stromal Lymphopoietin (TSLP), the key gene in AD development. Moreover, the genes encoding mediators of T H2 response, IL-4 and its receptor IL-4Rα were also silenced together with the genes encoding cytokines IL-1β, IL-6, IL-13, IL-23α, IL-33, IFN-γ, GM-CSF, VEGF A, the chemokines RANTES and IL-8, and intracellular signal transducers COX-2 and iNOS. Consequently, NTCI suppressed skin infiltration by inflammatory cells (eosinophils, macrophages, and CD4 + T lymphocytes), and reduced MC903-evoked proliferation of Ki-67-positive cells. Thus, we highlight the mechanism of action and the potential utility of topical NTCI for treatment of AD undergoing Phase 1/2 clinical trial (AMTX-100 CF, NCT04313400).
更多
查看译文
关键词
Inflammation,Peptide delivery,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要