Pyrolysis-induced phosphorus transformations for biosolids from diverse sources

Journal of environmental quality(2023)

引用 0|浏览9
暂无评分
摘要
Biosolids have been long used as a soil amendment to promote nutrient recovery. The readily releasable forms of nutrients present in this biowaste, such as phosphorus (P), along with their over application, can be detrimental to the environment, causing eutrophication. Pyrolysis, the thermal decomposition of organic materials at elevated temperature and low oxygen, seems to be a promising strategy to lower P release from biowastes such as biosolids. We pyrolyzed biosolids from various treatments and locations (Florida and Illinois; Galicia, Spain; and Sao Paulo, Brazil) to convert to biochar. Our objectives were (a) to use solid-state assessments, such as X-ray diffraction and scanning electron microscopy, and chemical assessments, such as water-soluble P (WSP), pH, Mehlich 3-extractable P (M3-P), total P (TP), and total Kjeldahl nitrogen, to evaluate changes caused by the conversion and (b) to compare P leaching potentials of biosolids and their corresponding biochars on two soils with varying P retention capacities. Pairwise comparisons indicated that biochar conversion significantly increased TP in the final material, but the absolute WSP decreased. However, M3-P remained the same after conversion to biochar. Cumulative P leached as a fraction of TP was greater for biosolids than their corresponding biochars. Two soils with contrasting P retention capacities predictably differed in P leaching behaviors as amended with biosolids and biochars. Differences suggest that future research could evaluate the efficacy of using mixtures of biosolids and biochar for a given soil to maintain soil fertility while reducing environmental P loss risk.
更多
查看译文
关键词
phosphorus transformations,biosolids
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要