Structural brain connectivity predicts early acute pain after mild traumatic brain injury

Pain(2023)

引用 0|浏览11
暂无评分
摘要
Mild traumatic brain injury (mTBI), is a leading cause of disability worldwide, with acute pain manifesting as one of its most debilitating symptoms. Understanding acute postinjury pain is important because it is a strong predictor of long-term outcomes. In this study, we imaged the brains of 157 patients with mTBI, following a motorized vehicle collision. We extracted white matter structural connectivity networks and used a machine learning approach to predict acute pain. Stronger white matter tracts within the sensorimotor, thalamiccortical, and default-mode systems predicted 20% of the variance in pain severity within 72 hours of the injury. This result generalized in 2 independent groups: 39 mTBI patients and 13 mTBI patients without whiplash symptoms. White matter measures collected at 6 months after the collision still predicted mTBI pain at that timepoint (n = 36). These white matter connections were associated with 2 nociceptive psychophysical outcomes tested at a remote body site-namely, conditioned pain modulation and magnitude of suprathreshold pain-and with pain sensitivity questionnaire scores. Our findings demonstrate a stable white matter network, the properties of which determine an important amount of pain experienced after acute injury, pinpointing a circuitry engaged in the transformation and amplification of nociceptive inputs to pain perception.
更多
查看译文
关键词
Mild traumatic brain injury, Whiplash, Acute pain, Pain sensitivity, Diffusion tensor imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要