Deep convolutional neural networks for generating atomistic configurations of multi-component macromolecules from coarse-grained models

JOURNAL OF CHEMICAL PHYSICS(2022)

引用 4|浏览9
暂无评分
摘要
Despite the modern advances in the available computational resources, the length and time scales of the physical systems that can be studied in full atomic detail, via molecular simulations, are still limited. To overcome such limitations, coarse-grained (CG) models have been developed to reduce the dimensionality of the physical system under study. However, to study such systems at the atomic level, it is necessary to re-introduce the atomistic details into the CG description. Such an ill-posed mathematical problem is typically treated via numerical algorithms, which need to balance accuracy, efficiency, and general applicability. Here, we introduce an efficient and versatile method for backmapping multi-component CG macromolecules of arbitrary microstructures. By utilizing deep learning algorithms, we train a convolutional neural network to learn structural correlations between polymer configurations at the atomistic and their corresponding CG descriptions, obtained from atomistic simulations. The trained model is then utilized to get predictions of atomistic structures from input CG configurations. As an illustrative example, we apply the convolutional neural network to polybutadiene copolymers of various microstructures, in which each monomer microstructure (i.e., cis-1,4, trans-1,4, and vinyl-1,2) is represented as a different CG particle type. The proposed methodology is transferable over molecular weight and various microstructures. Moreover, starting from a specific single CG configuration with a given microstructure, we show that by modifying its chemistry (i.e., CG particle types), we are able to obtain a set of well equilibrated polymer configurations of different microstructures (chemistry) than the one of the original CG configuration. Published under an exclusive license by AIP Publishing.
更多
查看译文
关键词
atomistic configurations,convolutional neural networks,deep convolutional neural networks,neural networks,models,multi-component,coarse-grained
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要