谷歌浏览器插件
订阅小程序
在清言上使用

Enteroviruses Manipulate the Unfolded Protein Response Through Multifaceted Deregulation of the Ire1-Xbp1 Pathway

Viruses(2022)

引用 2|浏览12
暂无评分
摘要
Many viruses are known to trigger endoplasmic reticulum (ER) stress in host cells, which in turn can develop a protective unfolded protein response (UPR). Depending on the conditions, the UPR may lead to either cell survival or programmed cell death. One of three UPR branches involves the upregulation of Xbp1 transcription factor caused by the unconventional cytoplasmic splicing of its mRNA. This process is accomplished by the phosphorylated form of the endoribonuclease/protein kinase Ire1/ERN1. Here, we show that the phosphorylation of Ire1 is up-regulated in HeLa cells early in enterovirus infection but down-regulated at later stages. We also find that Ire1 is cleaved in poliovirus- and coxsackievirus-infected HeLa cells 4–6 h after infection. We further show that the Ire1-mediated Xbp1 mRNA splicing is repressed in infected cells in a time-dependent manner. Thus, our results demonstrate the ability of enteroviruses to actively modulate the Ire1-Xbp1 host defensive pathway by inducing phosphorylation and proteolytic cleavage of the ER stress sensor Ire1, as well as down-regulating its splicing activity. Inactivation of Ire1 could be a novel mode of the UPR manipulation employed by viruses to modify the ER stress response in the infected cells.
更多
查看译文
关键词
ER stress,unfolded protein response,Ire1-Xbp1 pathway,picornavirus,poliovirus,coxsackievirus,Ire1 proteolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要