Different control strategies drive interlimb differences in performance and adaptation during reaching movements in novel dynamics

ENeuro(2022)

引用 2|浏览14
暂无评分
摘要
Humans exhibit lateralization such that most individuals typically show a preference for using one arm over the other for a range of movement tasks. The computational aspects of movement control leading to these differences in skill are not yet understood. It has been hypothesized that the dominant and non-dominant arms differ in terms of the use of predictive or impedance control mechanisms. However, previous studies present confounding factors that prevented clear conclusions: either the performances were compared across two different groups, or in a design in which asymmetrical transfer between limbs could take place. To address these concerns, we studied a reach adaptation task during which healthy volunteers performed movements with their right and left arms in random order. We performed two experiments. Experiment 1 (18 participants) focused on adaptation to the presence of a perturbing force field and Experiment 2 (12 participants) focused on rapid adaptations in feedback responses. The randomization of the left and right arm led to simultaneous adaptation, allowing us to study lateralization in single individuals with symmetrical and minimal transfer between limbs. This design revealed that participants were able to adapt control of both arms, and that adaptation was greater in the dominant arm than in the non-dominant. We also observed that the non-dominant arm showed a different control strategy compatible with robust control when adapting to the force field perturbation. EMG data showed that these differences in control were not caused by differences in co-contraction across the arms. Thus, instead of assuming differences in predictive or reactive control schemes, our data show that in the context of optimal control, both arms can adapt, and that the non-dominant arm uses a more robust, model-free strategy likely to compensate for less accurate internal representations of movement dynamics. Significance statement We studied a reach adaptation task during which volunteers performed the task with their right and left arm randomly. The randomization of the arms allowed us to study lateralization in single individuals with symmetrical and minimal transfer between limbs. We observed a slightly greater adaptation of the dominant arm in the force applied to counter the perturbation. Moreover, the non-dominant arm showed a more robust control strategy when adapting to the force field perturbation, which enabled similar deviations despite faster movements. These interlimb differences were not caused by differences in co-contraction across the two arms. Our results suggest that both arms can adapt to the presence of a force field but the non-dominant arm uses a more robust, model-free strategy. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
reaching movements,control strategies,novel dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要