Molecular Identification and Biochemical Characterization of Novel Marine Yeast Strains with Potential Application in Industrial Biotechnology

FERMENTATION-BASEL(2022)

引用 2|浏览6
暂无评分
摘要
Cell-based agriculture is an emerging and attractive alternative to produce various food ingredients. In this study, five strains of marine yeast were isolated, molecularly identified and biochemically characterized. Molecular identification was realized by sequencing the DNA ITS1 and D1/D2 region, and sequences were registered in GenBank as Yarrowia lipolytica YlTun15, Rhodotorula mucilaginosa RmTun15, Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015 and Trichosporon asahii TaTun15. Yeasts showed protein content varying from 26% (YlTun15) to 40% (CtTun15 and DhTun2015), and essential amino acids ranging from 38.1 to 64.4% of the total AAs (CtTun15-YlTun15, respectively). Lipid content varied from 11.15 to 37.57% with substantial amount of PUFA (>12% in RmTun15). All species had low levels of Na (<0.15 mg/100 g) but are a good source of Ca and K. Yeast cytotoxic effect was investigated against human embryonic kidney cells (HEK 293); results showed improved cell viability with all added strains, indicating safety of the strains used. Based on thorough literature investigation and yeast composition, the five identified strains could be classified not only as oleaginous yeasts but also as single cell protein (SCP) (DhTun2015 and CtTun15) and single cell oil (SCO) (RmTun15, YlTun15 and TaTun15) producers; and therefore, they represent a source of alternative ingredients for food, feed and other sectors.
更多
查看译文
关键词
marine yeast, molecular identification, biochemical composition, cytotoxicity, SCO, SCP
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要