Circular polarization in atmospheric aerosols

ATMOSPHERIC CHEMISTRY AND PHYSICS(2022)

引用 2|浏览10
暂无评分
摘要
Recent technological advances have demonstrated the feasibility of deploying spaceborne optical detectors with full polarimetric capabilities. The measurement of all four Stokes coefficients opens significant new opportunities for atmospheric aerosol studies and applications. While considerable amounts of attention have been dedicated to sensors with sensitivity to the total intensity and linear polarization (represented by Stokes coefficients I, U, Q), there has been less attention to the additional information brought by measuring circular polarization (coefficient V). This report fills this gap in knowledge by providing an overview of aerosol sources of circular polarization in the atmosphere and discusses possible remote sensing signatures. In this paper, circularly polarized radiation that results from the interaction of incident unpolarized radiation is considered in three physical settings: optical activity originating in biogenic aerosols, alignment of non-spherical particles in the presence of electrical fields (such as dust, smoke, and volcanic ash), and aerosol multiple scattering effects. Observational and theoretical evidence of, and the settings and conditions for, non-zero aerosol circular polarization generated from incident unpolarized radiation are here gathered and discussed. In addition, novel radiative transfer simulations are shown to illustrate notable spectral and other features where circular polarization may provide additional information that is possibly independent from total intensity and linear polarization-only observations. Current techniques for the detection of aerosol composition (also referred as aerosol type) from space provide limited information. Remote identification of aerosols such as smoke, volcanic ash, and dust particles can only be accomplished with some degree of confidence for moderate to high concentrations. When the same aerosols are found at lower concentrations (but still high enough to be of importance for air quality and cloud formation), these methods often produce ambiguous results. The circular polarization of aerosols is rarely utilized, and we explore its value for improved determination aerosol composition. This study is presented as an overview with a goal to provide a new perspective on an overlooked optical property and to trigger interest in further exploration of this subject.
更多
查看译文
关键词
atmospheric aerosols,circular polarization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要