Tanshinone IIA promotes apoptosis by downregulating BCL2 and upregulating TP53 in triple-negative breast cancer

Naunyn-Schmiedeberg's Archives of Pharmacology(2022)

引用 2|浏览4
暂无评分
摘要
Tanshinone IIA (Tan IIA) was mainly used for cardiovascular disease treatment. Recent studies have demonstrated the role of Tan IIA for tumor treatment, but its mechanism remains unclear. At the first, the inhibitory effect of Tan IIA on 4T1 breast cancer cells was determined by CCK8 and colony formation assay. Then, a 4T1 BALB/c model of breast cancer was established to evaluate the anti-cancer effect of Tan IIA in vivo. Flow cytometry analysis and the TUNEL test were used to detect cell apoptosis in vitro and in vivo, respectively. The related targets and mechanisms of Tan IIA were predicted through network-based systems biology. At last, molecular docking and the molecular biological techniques were used to evaluate the predicted targets. Tan IIA displayed encouraging inhibitory influences on 4T1 cells after incubation for 24 h and showed a half-maximal inhibitory concentration (IC50) of 49.78 μM after 48-h incubation. After 23 days of treatment, the relative tumor volumes in the Tan IIA group were 65.53% inhibited compared with the control group. Furthermore, Tan IIA induced 4T1 cell apoptosis both in vivo and in vitro. The possible targets of Tan IIA for TNBC treatment were predicted with network-based systems biology, and results showed that TP53, NF-κB, AKT, MYC, and BCL-2 were the hub targets. The mechanism against breast cancer may be based on the P53 signaling pathway, the PI3K/Akt pathway, the MAPK signaling pathway, and the mTOR signaling pathways. Molecular docking analysis reveals that Tan IIA has a high affinity for p53, Bcl-2, and NF-κB1; the binding energies were − 6.92, − 6.07, and − 6.28 kcal/mol, respectively. The predicted proteins were further validated using Western blotting. Increased expression of phosphorylated p53 and p53 and decreased expression of Bcl-2 were found in Tan IIA-treated 4T1 cells. Tan IIA is potentially effective for the treatment of 4T1 breast cancer, and the molecular mechanism may be through enhancing the activity of p53 and decreasing Bcl-2 to suppress proliferation and promote apoptosis.
更多
查看译文
关键词
Tanshinone IIA, Triple-negative breast cancer, Apoptosis, Network pharmacology, TP53, BCL2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要