Exploring State Change Capture of Heterogeneous Backbones @ Ego4D Hands and Objects Challenge 2022

arxiv(2022)

引用 0|浏览20
暂无评分
摘要
Capturing the state changes of interacting objects is a key technology for understanding human-object interactions. This technical report describes our method using heterogeneous backbones for the Ego4D Object State Change Classification and PNR Temporal Localization Challenge. In the challenge, we used the heterogeneous video understanding backbones, namely CSN with 3D convolution as operator and VideoMAE with Transformer as operator. Our method achieves an accuracy of 0.796 on OSCC while achieving an absolute temporal localization error of 0.516 on PNR. These excellent results rank 1st on the leaderboard of Ego4D OSCC & PNR-TL Challenge 2022.
更多
查看译文
关键词
ego4d hands
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要