Generalized Generative Deep Learning Models for Biosignal Synthesis and Modality Transfer

IEEE Journal of Biomedical and Health Informatics(2022)

引用 0|浏览8
暂无评分
摘要
Generative Adversarial Networks (GANs) are a revolutionary innovation in machine learning that enables the generation of artificial data. Artificial data synthesis is valuable especially in the medical field where it is difficult to collect and annotate real data due to privacy issues, limited access to experts, and cost. While adversarial training has led to significant breakthroughs in the computer vision field, biomedical research has not yet fully exploited the capabilities of generative models for data generation, and for more complex tasks such as biosignal modality transfer. We present a broad analysis on adversarial learning on biosignal data. Our study is the first in the machine learning community to focus on synthesizing 1D biosignal data using adversarial models. We consider three types of deep generative adversarial networks: a classical GAN, an adversarial AE, and a modality transfer GAN; individually designed for biosignal synthesis and modality transfer purposes. We evaluate these methods on multiple datasets for different biosignal modalites, including phonocardiogram (PCG), electrocardiogram (ECG), vectorcardiogram and 12-lead electrocardiogram. We follow subject-independent evaluation protocols, by evaluating the proposed models' performance on completely unseen data to demonstrate generalizability. We achieve superior results in generating biosignals, specifically in conditional generation, by synthesizing realistic samples while preserving domain-relevant characteristics. We also demonstrate insightful results in biosignal modality transfer that can generate expanded representations from fewer input-leads, ultimately making the clinical monitoring setting more convenient for the patient. Furthermore our longer duration ECGs generated, maintain clear ECG rhythmic regions, which has been proven using ad-hoc segmentation models.
更多
查看译文
关键词
Machine learning,generative models,synthesis,electrocardiogram,12-lead ECG,heart sounds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要