Proactive look-ahead control of transaction flows for high-throughput payment channel network

International Conference on Management of Data(2022)

引用 1|浏览18
暂无评分
摘要
ABSTRACTBlockchain technology has gained popularity owing to the success of cryptocurrencies such as Bitcoin and Ethereum. Nonetheless, the scalability challenge largely limits its applications in many real-world scenarios. Off-chain payment channel networks (PCNs) have recently emerged as a promising solution by conducting payments through off-chain channels. However, the throughput of current PCNs does not yet meet the growing demands of large-scale systems because: 1) most PCN systems only focus on maximizing the instantaneous throughput while failing to consider network dynamics in a long-term perspective; 2) transactions are re-actively routed in PCNs, in which intermediate nodes only passively forward every incoming transaction. These limitations of existing PCNs inevitably lead to channel imbalance and the failure of routing subsequent transactions. To address these challenges, we propose a novel proactive look-ahead algorithm (PLAC) that controls transaction flows from a long-term perspective and proactively prevents channel imbalance. In particular, we first conduct a measurement study on two real-world PCNs to explore their characteristics in terms of transaction distribution and topology. On that basis, we propose PLAC based on deep reinforcement learning (DRL), which directly learns the system dynamics from historical interactions of PCNs and aims at maximizing the long-term throughput. Furthermore, we develop a novel graph convolutional network-based model for PLAC, which extracts the inter-dependency between PCN nodes to consequently boost the performance. Extensive evaluations on real-world datasets show that PLAC improves state-of-the-art PCN routing schemes w.r.t the long-term throughput from 6.6% to 34.9%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要