How Close Dark Matter Halos and MOND Are to Each Other: Three-Dimensional Tests Based on Gaia DR2

arxiv(2022)

引用 5|浏览2
暂无评分
摘要
Aiming at discriminating different gravitational potential models of the Milky Way, we perform tests based on the kinematic data powered by the Gaia DR2 astrometry, over a large range of $(R,z)$ locations. Invoking the complete form of Jeans equations that admit three integrals of motion, we use the independent $R$- and $z$-directional equations as two discriminators ($T_R$ and $T_z$). We apply the formula for spatial distributions of radial and vertical velocity dispersions proposed by Binney et al., and successfully extend it to azimuthal components, $\sigma_\theta(R,z)$ and $V_\theta(R,z)$; the analytic form avoids the numerical artifacts caused by numerical differentiation in Jeans-equations calculation given the limited spatial resolutions of observations, and more importantly reduces the impact of kinematic substructures in the Galactic disk. It turns out that whereas the current kinematic data are able to reject Moffat's Modified Gravity (let alone the Newtonian baryon-only model), Milgrom's MOND is still not rejected. In fact, both the carefully calibrated fiducial model invoking a spherical dark matter (DM) halo and MOND are equally consistent with the data at almost all spatial locations (except that probably both have respective problems at low-$|z|$ locations), no matter which a tracer population or which a meaningful density profile is used. Because there is no free parameter at all in the quasi-linear MOND model we use, and the baryonic parameters are actually fine-tuned in the DM context, such an effective equivalence is surprising, and might be calling forth a transcending synthesis of the two paradigms.
更多
查看译文
关键词
gravitation,Galaxy: halo,Galaxy: kinematics and dynamics,dark matter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要