Constructing Z-scheme 1D/2D heterojunction of ZnIn2S4 nanosheets decorated WO3 nanorods to enhance Cr(VI) photocatalytic reduction and rhodamine B degradation

CHEMOSPHERE(2023)

引用 7|浏览9
暂无评分
摘要
Photocatalysis has been vastly employed as a feasible and efficient strategy for the removal of environmental pollutants. In this study, a well-designed core-shell heterojunction of WO3 decorated with ZnIn2S4 nanosheets were fabricated under mild in-situ conditions, and fabricated processes were systematically investigated with different fabrication durations. The coupling of WO3 and ZnIn2S4 (ZIS) resulted in a Z-scheme mechanism for charge carrier transfer, holding the respective redox capacity. The as-prepared 1D/2D WO3@ZIS heterostructure displayed the highest removal efficiency within 30 min for 25 mg L-1 Cr(VI), 89.3 and 29.7 times higher than pure WO3 and ZnIn2S4. 1D/2D WO3@ZIS remained excellently stable after 5 cycling experiments. Moreover, 40 mg L-1 RhB could be degraded within 50 min. The broad and short photogenerated electron transportation path is guaranteed by the 1D/2D and Z-scheme charge separation mechanism. It efficiently prevented photo -generated charge carriers from recombination, resulting in a longer carrier lifespan and better photocurrent responses than that of pure ones. This photocatalytic system showed promising results and also provides a framework for an efficient system for photocatalysis with potential for environmental application.
更多
查看译文
关键词
1D,2D heterojunction,Bifunctional photocatalyst,Heavy metals,Organic pollutants,Z -Scheme
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要