谷歌浏览器插件
订阅小程序
在清言上使用

A Back-Translational Study of Descending Interactions with the Induction of Hyperalgesia by High-Frequency Electrical Stimulation in Rats and Humans.

PAIN(2024)

引用 0|浏览21
暂无评分
摘要
High-frequency electrocutaneous stimulation induces perceptual and neuronal correlates of hyperalgesia, and concurrently applying a distant conditioning stimulus does not affect the development of sensitisation. In humans and animals, high-frequency electrocutaneous stimulation (HFS) induces an "early long-term potentiation-like" sensitisation, where synaptic plasticity is underpinned by an ill-defined interaction between peripheral input and central modulatory processes. The relative contributions of these processes to the initial pain or nociceptive response likely differ from those that underpin development of the heightened response. To investigate the impact of HFS-induced hyperalgesia on pain and nociception in perception and neural terms, respectively, and to explore the impact of descending inhibitory pathway activation on the development of HFS-induced hyperalgesia, we performed parallel studies utilising identical stimuli to apply HFS concurrent to (1) a conditioned pain modulation paradigm during psychophysical testing in healthy humans or (2) a diffuse noxious inhibitory controls paradigm during in vivo electrophysiological recording of spinal neurones in healthy anaesthetised rats. High-frequency electrocutaneous stimulation alone induced enhanced perceptual responses to pinprick stimuli in cutaneous areas secondary to the area of electrical stimulation in humans and increased the excitability of spinal neurones which exhibited stimulus intensity-dependent coded responses to pinprick stimulation in a manner that tracked with human psychophysics, supporting their translational validity. Application of a distant noxious conditioning stimulus during HFS did not alter perceived primary or secondary hyperalgesia in humans or the development of primary or secondary neuronal hyperexcitability in rats compared with HFS alone, suggesting that, upon HFS-response initiation in a healthy nervous system, excitatory signalling escapes inhibitory control. Therefore, in this model, dampening facilitatory mechanisms rather than augmenting top-down inhibitions could prevent pain development.
更多
查看译文
关键词
Conditioned pain modulation,Quantitative sensory testing,Secondary hyperalgesia,High-frequency electrocutaneous stimulation,In vivo electrophysiology,Dorsal horn,Wide dynamic range,Diffuse noxious inhibitory controls
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要