Machine-Learning Classification of Pulse Waveform Quality.

Sensors(2022)

引用 0|浏览9
暂无评分
摘要
Pulse measurements made using wearable devices can aid the monitoring of human physiological condition. Accurate estimation of waveforms is often difficult for nonexperts; motion artifacts may occur during tonometry measurements when the skin-sensor contact pressure is insufficient. An alternative approach is to extract only high-quality pulses for use in index calculations. The present study aimed to determine the effectiveness of using machine-learning analysis in discriminating between high-quality and low-quality pulse waveforms induced by applying different contact pressures. Radial blood pressure waveform (BPW) signals were measured noninvasively in healthy young subjects using a strain-gauge transducer. One-minute-long trains of pulse data were measured when applying the appropriate contact pressure (67.80 ± 1.55 mmHg) and a higher contact pressure (151.80 ± 3.19 mmHg). Eight machine-learning algorithms were employed to evaluate the following 40 harmonic pulse indices: amplitude proportions and their coefficients of variation and phase angles and their standard deviations. Significant differences were noted in BPW indices between applying appropriate and higher skin-surface contact pressures. The present appropriate contact pressure could not only provide a suitable holding force for the wearable device but also helped to maintain the physiological stability of the underlying tissues. Machine-learning analysis provides an effective method for distinguishing between the high-quality and low-quality pulses with excellent discrimination performance (leave-one-subject-out test: random-forest AUC = 0.96). This approach will aid the development of an automatic screening method for waveform quality and thereby improve the noninvasive acquisition reliability. Other possible interfering factors in practical applications can also be systematically studied using a similar procedure.
更多
查看译文
关键词
contacting pressure,machine learning,pulse,spectral analysis,waveform quality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要