谷歌浏览器插件
订阅小程序
在清言上使用

[Distribution, Migration, and Transformation Mechanism of Labile Phosphorus in Sediments of Xixi River Estuary, Xiamen].

Huan jing ke xue= Huanjing kexue(2022)

引用 0|浏览15
暂无评分
摘要
To explore the effect of manganese, iron, and sulfur geochemistry on the distribution of labile phosphorus in different estuarine areas, the diffusion gradient in thin-film (DGT) sampling technique was used for in-situ high-resolution monitoring of available phosphorus (DGT-P), manganese, iron, and sulfur in sediments from Xixi River estuary in Xiamen. The results showed that the distribution of DGT-P in the vertical profile was closely related to the redox transformation of iron and sulfur and the background value of active phosphorus in sediments. The passivation/activation of phosphorus was mainly controlled by the oxidative adsorption/reductive dissolution of phosphorus by iron oxides and the activation of phosphorus induced by sulfate reduction and sulfide accumulation. Along the sampling sites, the average concentration of DGT-P varied greatly (0.075-0.80 mg·L-1), which was not related to salinity but closely related to redox conditions, that is, the deeper the oxidation zone, the lower the average concentration of DGT-P. The simulation results showed that the phosphorus resupply capacity from surface sediments to porewater was correlated with DGT-P concentration and redox conditions, that is, the oxidative environment was unconducive to the desorption and resupply of sediment phosphorus, whereas the coupling with iron and sulfur geochemistry in the reducing environment was conducive to the maintenance of high labile phosphorus concentration and the continuous release of phosphorus.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要