Sensitivity of strong lensing observations to dark matter substructure: a case study with Euclid

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2023)

引用 3|浏览14
暂无评分
摘要
We introduce a machine learning method for estimating the sensitivity of strong lens observations to dark matter subhaloes in the lens. Our training data include elliptical power-law lenses, Hubble Deep Field sources, external shear, and noise and PSF for the Euclid VIS instrument. We set the concentration of the subhaloes using a $v_\mathrm{max}$-$r_\mathrm{max}$ relation. We then estimate the dark matter subhalo sensitivity in $16{,}000$ simulated strong lens observations with depth and resolution resembling Euclid VIS images. We find that, with a $3\sigma$ detection threshold, $2.35$ per cent of pixels inside twice the Einstein radius are sensitive to subhaloes with a mass $M_\mathrm{max}\leq 10^{10}M_\odot$, $0.03$ per cent are sensitive to $M_\mathrm{max}\leq 10^{9}M_\odot$, and, the limit of sensitivity is found to be $M_\mathrm{max}=10^{8.8\pm0.2}M_\odot$. Using our sensitivity maps and assuming CDM, we estimate that Euclid-like lenses will yield $1.43^{+0.14}_{-0.11}[f_\mathrm{sub}^{-1}]$ detectable subhaloes per lens in the entire sample, but this increases to $35.6^{+0.9}_{-0.9}[f_\mathrm{sub}^{-1}]$ per lens in the most sensitive lenses. Estimates are given in units of the inverse of the substructure mass fraction $f_\mathrm{sub}^{-1}$. Assuming $f_\mathrm{sub}=0.01$, one in every $70$ lenses in general should yield a detection, or one in every $\sim$ three lenses in the most sensitive sample. From $170,000$ new strong lenses detected by Euclid, we expect $\sim 2500$ new subhalo detections. We find that the expected number of detectable subhaloes in warm dark matter models only changes relative to cold dark matter for models which have already been ruled out, i.e., those with half-mode masses $M_\mathrm{hm}>10^8M_\odot$.
更多
查看译文
关键词
gravitational lensing: strong,dark matter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要