谷歌浏览器插件
订阅小程序
在清言上使用

Variational Phase Estimation with Variational Fast Forwarding.

Quantum(2024)

引用 0|浏览10
暂无评分
摘要
Subspace diagonalisation methods have appeared recently as promising means to access the ground state and some excited states of molecular Hamiltonians by classically diagonalising small matrices, whose elements can be efficiently obtained by a quantum computer. The recently proposed Variational Quantum Phase Estimation (VQPE) algorithm uses a basis of real time-evolved states, for which the energy eigenvalues can be obtained directly from the unitary matrix U=e−iHΔt, which can be computed with cost linear in the number of states used. In this paper, we report a circuit-based implementation of VQPE for arbitrary molecular systems and assess its performance and costs for the H2, H3+ and H6 molecules. We also propose using Variational Fast Forwarding (VFF) to decrease to quantum depth of time-evolution circuits for use in VQPE. We show that the approximation provides a good basis for Hamiltonian diagonalisation even when its fidelity to the true time evolved states is low. In the high fidelity case, we show that the approximate unitary U can be diagonalised instead, preserving the linear cost of exact VQPE.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要