An algorithmic approach to finding canonical differential equations for elliptic Feynman integrals

arxiv(2023)

引用 2|浏览4
暂无评分
摘要
bstract In recent years, differential equations have become the method of choice to compute multi-loop Feynman integrals. Whenever they can be cast into canonical form, their solution in terms of special functions is straightforward. Recently, progress has been made in understanding the precise canonical form for Feynman integrals involving elliptic polylogarithms. In this article, we make use of an algorithmic approach that proves powerful to find canonical forms for these cases. To illustrate the method, we reproduce several known canonical forms from the literature and present examples where a canonical form is deduced for the first time. Together with this article, we also release an update for INITIAL, a publicly available Mathematica implementation of the algorithm.
更多
查看译文
关键词
Higher-Order Perturbative Calculations,Automation,Scattering Amplitudes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要