Neural Photo-Finishing

ACM TRANSACTIONS ON GRAPHICS(2022)

引用 7|浏览31
暂无评分
摘要
Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.
更多
查看译文
关键词
image processing,photo-finishing,raw processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要