Boundary effects in Radiative Transfer of acoustic waves in a randomly fluctuating half-space

arXiv (Cornell University)(2022)

引用 0|浏览10
暂无评分
摘要
This paper concerns the derivation of radiative transfer equations for acoustic waves propagating in a randomly fluctuating half-space in the weak-scattering regime, and the study of boundary effects through an asymptotic analysis of the Wigner transform of the wave solution. These radiative transfer equations allow to model the transport of wave energy density, taking into account the scattering by random heterogeneities. The approach builds on the method of images, where the half-space problem is extended to a full-space, with two symmetric sources and an even map of mechanical properties. Two contributions to the total energy density are then identified: one similar to the energy density propagation in a full-space, for which the resulting lack of statistical stationarity of the medium properties has no leading-order effect; and one supported within one wavelength of the boundary, which describes interference effects between the waves produced by the two symmetric sources. In the case of a homogeneous Neumann boundary conditions, this boundary effect yields a doubling of the intensity, and in the case of homogeneous Dirichlet boundary conditions, a canceling of that intensity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要