A Low-Complexity and High-Performance Energy Management Strategy of a Hybrid Electric Vehicle by Model Approximation

2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)(2022)

引用 1|浏览8
暂无评分
摘要
The fuel economy of a hybrid electric vehicle (HEV) is determined by its energy management strategy (EMS), while the conventional EMS usually suffers from enormous computation loads when solving a nonlinear optimization problem. To resolve this issue, this paper presents a computationally efficient EMS with close-to-optimal performance using very limited computation resources. Relying on the optimal solutions by offline dynamic programming (DP), a constrained model predictive control (MPC) can quickly determine the engine on/off status and then the torque split problem is solved by a value-based Pontryagin’s minimum principle (PMP). Two measures are taken to further reduce the online computation cost: by surface fitting, the tabular value function is replaced by piecewise linear polynomials and thus the memory occupation is greatly reduced; and by model approximation, the nonlinear torque split problem becomes a quadratic programming one that can be more rapidly solved. The testing results from processor-in-the-loop (PIL) simulation indicate that the proposed EMS can generate a fuel efficiency close to the one by DP, but saves 70% onboard memory space and 30% CPU utilization compared with the benchmark EMS without taking the two measures.
更多
查看译文
关键词
Hybrid electric vehicle,Energy management strategy,Value fitting,Model approximation,Quadratic programming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要