Wide-field optical imaging of electrical charge and chemical reactions at the solid-liquid interface.

Proceedings of the National Academy of Sciences of the United States of America(2022)

引用 0|浏览3
暂无评分
摘要
From molecules and particles to macroscopic surfaces immersed in fluids, chemical reactions often endow interfaces with electrical charge which in turn governs surface interactions and interfacial phenomena. The ability to measure the electrical properties of a material immersed in any solvent, as well as to monitor the spatial heterogeneity and temporal variation thereof, has been a long-standing challenge. Here, we describe an optical microscopy-based approach to probe the surface charge distribution of a range of materials, including inorganic oxide, polymer, and polyelectrolyte films, in contact with a fluid. The method relies on optical visualization of the electrical repulsion between diffusing charged probe molecules and the unknown surface to be characterized. Rapid image-based measurements enable us to further determine isoelectric points of the material as well as properties of its ionizable chemical groups. We further demonstrate the ability to optically monitor chemically triggered surface charge changes with millisecond time resolution. Finally, we present a scanning-surface probe technique capable of diffraction-limited imaging of spatial heterogeneities in chemical composition and charge over large areas. This technique will enable facile characterization of the solid-liquid interface with wide-ranging relevance across application areas from biology to engineering.
更多
查看译文
关键词
electrical potential and surface charge measurement,electrostatic imaging,interface characterization,surface chemistry,thin-film properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要