Hunting highly conductive Li6PS5I electrolyte via Sn-Cl dual doping for solid-state batteries

Scripta Materialia(2023)

引用 3|浏览15
暂无评分
摘要
The low Li-ion conductivity and poor interfacial compatibility towards cathode/anode materials of Li6PS5I solid electrolytes have significantly impeded their applications in all-solid-state batteries. This work developed a facial design strategy to improve the ionic conductivity and lithium metal compatibility of Li6PS5I electrolyte by the Sn-Cl dual doping. The optimal Li6.6P0.8Sn0.2S5I0.6Cl0.4 electrolyte shows ultrahigh conductivity up to 0.96 mS/cm and enhanced lithium metal compatibility. The assembled battery using LiNi0.6Mn0.2Co0.2O2 cathode and Li-In anode delivers a high initial discharge capacity of 175.7 mAh/g at 0.1C and maintains 79.2% after 100 cycles. Moreover, the corresponding battery using lithium metal anode displays a higher initial capacity (137.7 mAh/g vs. 112.7 mAh/g) and superior cyclability. The superior battery performances are attributed to the smaller interfacial resistances of those solid electrolyte-involved interfaces due to the Sn-Cl dual doping. This work demonstrates that the dual doping strategy is an effective route to exploring highly conductive Li6PS5I electrolytes.
更多
查看译文
关键词
Li6PS5I,Ionic conductivity,Sn-Cl dual doping,Solid-state batteries,Electrochemical performances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要