Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo's Garden (R): Adaptation to New Cultivation Systems

Molecules(2022)

引用 0|浏览8
暂无评分
摘要
The Nemo's Garden (R) project is an alternative production system for areas with scarce cultivable land but significant presence of water; thus, it is an interesting intervention to address the climate crisis. This work aimed to evaluate the micromorphological, biochemical, and phytochemical characteristics of Stevia rebaudiana (Bertoni) Bertoni grown underwater compared to the terrestrial specimens. The micromorphological analyses, performed on the leaves using light microscopy, fluorescence microscopy, and scanning electron microscopy, evidenced a general uniformity of the trichome morphotype and distribution pattern. The histochemical investigation indicated the simultaneous presence of terpenes and polyphenols in the trichome secreted material from the underwater samples and a prevailing polyphenolic content in the terrestrial specimens; this was also confirmed by biochemical analyses (26.6 mg GAE/g DW). The characterization of non-volatile components, performed using HPLC-MS, showed similar chemical profiles in all the samples, which were characterized by phenolic compounds and steviol glycosides. The volatile compounds, evaluated using HS-SPME coupled with GC-MS, showed sesquiterpene hydrocarbons as the main class in all the analyzed samples (80.1-93.9%). However, the control plants were characterized by a higher content of monoterpene hydrocarbons (12.1%). The underwater biosphere environment did not alter S. rebaudiana micro-morphological characters, although slight qualitative changes were evidenced for the compounds produced as a response to the growth conditions.
更多
查看译文
关键词
sustainability,steviol glycosides,polyphenols,LC-MS,beta-caryophyllene,GC-MS,volatiles,head space,climate change
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要