Optimal Control Design for Operating a Hybrid PV Plant with Robust Power Reserves for Fast Frequency Regulation Services

arxiv(2022)

引用 0|浏览7
暂无评分
摘要
This paper presents an optimal control strategy for operating a solar hybrid system consisting of solar photovoltaic (PV) and a high-power, low-storage battery energy storage system (BESS). A state-space model of the hybrid PV plant is first derived, based on which an adaptive model predictive controller is designed. The controller's objective is to control the PV and BESS to follow power setpoints sent to the the hybrid system while maintaining desired power reserves and meeting system operational constraints. Furthermore, an extended Kalman filter (EKF) is implemented for estimating the battery SOC, and an error sensitivity is executed to assess its limitations. To validate the proposed strategy, detailed EMT models of the hybrid system are developed so that losses and control limits can be quantified accurately. Day-long simulations are performed in an OPAL-RT real-time simulator using second-by-second actual PV farm data as inputs. Results verify that the proposed method can follow power setpoints while maintaining power reserves in days of high irradiance intermittency even with a small BESS storage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要