Formation of miRNA Nanoprobes-Conjugation Approaches Leading to the Functionalization.

Molecules (Basel, Switzerland)(2022)

引用 0|浏览3
暂无评分
摘要
Recently, microRNAs (miRNA) captured the interest as novel diagnostic and prognostic biomarkers, with their potential for early indication of numerous pathologies. Since miRNA is a short, non-coding RNA sequence, the sensitivity and selectivity of their detection remain a cornerstone of scientific research. As such, methods based on nanomaterials have emerged in hopes of developing fast and facile approaches. At the core of the detection method based on nanotechnology lie nanoprobes and other functionalized nanomaterials. Since miRNA sensing and detection are generally rooted in the capture of target miRNA with the complementary sequence of oligonucleotides, the sequence needs to be attached to the nanomaterial with a specific conjugation strategy. As each nanomaterial has its unique properties, and each conjugation approach presents its drawbacks and advantages, this review offers a condensed overview of the conjugation approaches in nanomaterial-based miRNA sensing. Starting with a brief recapitulation of specific properties and characteristics of nanomaterials that can be used as a substrate, the focus is then centered on covalent and non-covalent bonding chemistry, leading to the functionalization of the nanomaterials, which are the most commonly used in miRNA sensing methods.
更多
查看译文
关键词
conjugation strategy,covalent bonding,miRNA,nanomaterial,non-covalent bonding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要