Sustained Activation of EGFR-ERK1/2 Signaling Limits the Response to Tigecycline-Induced Mitochondrial Respiratory Deficiency in Liver Cancer
eBioMedicine(2023)
摘要
Background Identification of tumor dependencies is important for developing therapeutic strategies for liver cancer.Methods A genome-wide CRISPR screen was performed for finding critical vulnerabilities in liver cancer cells. Compounds screen, RNA sequencing, and human phospho-receptor tyrosine kinase arrays were applied to explore mechanisms and search for synergistic drugs.Findings We identified mitochondrial translation-related genes associated with proliferation for liver cancer cells. Tigecycline induced deficiency of respiratory chain by disturbing mitochondrial translation process and showed therapeutic potential in liver cancer. For liver cancer cells extremely insensitive to tigecycline, a compounds screen was applied to identify MEK inhibitors as synergistic drugs to tigecycline-insensitive liver cancer cells. Mechanistically, sustained activation of EGFR-ERK1/2-MYC cascade conferred the insensitivity to tigecycline, which was mediated by enhanced secretion of EREG and AREG. Moreover, glycolytic enzymes, such as HK2 and PKM2 were upregulated to stimulate glycolysisin a MYC-dependent manner. Tigecycline induced respiratory chain deficiency in combination with cutting off EGFR-ERK1/2-MYC cascade by MEK inhibitors or EGFR inhibitors, resulting in decrease of both oxidative phosphorylation and glycolysis in liver cancer cells.Interpretation Our study proved that blocking EGFR-ERK1/2-MYC cascade combined with tigecycline could be a potential therapeutic strategy for liver cancer. Copyright (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多查看译文
关键词
CRISPR screen,Tigecycline,MEK,Glycolysis,Oxidative phosphorylation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要