Effects of 25-Hydroxyvitamin D Levels on Renal Function: A Bidirectional Mendelian Randomization Study.

The Journal of clinical endocrinology and metabolism(2023)

引用 3|浏览6
暂无评分
摘要
CONTEXT:Observational studies investigating the role of vitamin D in renal function have yielded inconsistent results. OBJECTIVE:We tested whether 25-hydroxyvitamin D (25[OH]D) serum levels are associated with renal function, and inversely, whether altered renal function causes changes in 25(OH)D, using Mendelian randomization (MR). METHODS:In this two-sample MR study, we used single nucleotide polymorphisms (SNP) associated with 25(OH)D in 443 734 Europeans and evaluated their effects on estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), chronic kidney disease (CKD) risk and progression in genome-wide association studies totaling over 1 million Europeans. To control for pleiotropy, we also used SNPs solely in DHCR7, CYP2R1, and GC, all genes with known roles in vitamin D metabolism. We performed a reverse MR, using SNPs for the above indices of renal function to study causal effects on 25(OH)D levels. RESULTS:We did not find robust evidence supporting effects of 25(OH)D on eGFR, BUN, and CKD or its progression. Our inverse variance weighted MR demonstrated a 0.56 decrease in standardized log-transformed 25(OH)D (95% CI -0.73, -0.41; P = 2.89 × 10-12) per unit increase in log-transformed eGFR. Increased BUN was associated with increased 25(OH)D (β = 0.25, 95% CI 0.15, 0.36; P = 4.12 × 10-6 per unit increase in log-transformed BUN). Finally, genetically predicted CKD conferred a 0.05 increase in standardized log-transformed 25(OH)D level (95% CI 0.04, 0.06; P = 1.06 × 10-13). Other MR methods confirmed the findings of the main analyses. CONCLUSION:Genetically predicted CKD, increased BUN, and decreased eGFR are associated with increased 25(OH)D levels, but we found no causal effect of 25(OH)D on renal function in Europeans.
更多
查看译文
关键词
GWAS,Mendelian randomization,causal inference,chronic kidney disease,renal function,vitamin D
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要