Nanozyme-Engineered Bioglass through Supercharged Interface for Enhanced Anti-Infection and Fibroblast Regulation

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 6|浏览16
暂无评分
摘要
Effective therapy of infection impaired tissue defects has long been an important but challenging topic, and alternative antibiotic-free solutions are greatly demanded to tackle bacterial infections and promote tissue repair. Herein, the use of supercharged gold nanoclusters (AuNCs) with enhanced enzyme mimic activity as novel interface modulator of bioactive glass nanoparticles (BGN) for infected wound treatment is reported. The supercharged AuNCs exhibit extraordinary affinity toward BGN, leading to the robust immobilization of AuNCs on BGN (BGN-AuNCs). Functional AuNCs endow BGN with superior peroxidase-like activity for catalytic antibacterial action, which can kill bacteria with a concentration down to 75 mu g mL(-1) within 6 h due to the production of highly toxic center dot OH. Moreover, expression level of COL-1, TGF-beta, and FGF-2 in fibroblasts is actively up-regulated to 2.9, 3.1, and 1.6 times higher than that of control group due to the positive effect of BGN-AuNCs on cell proliferation. Meanwhile, intrinsic photoluminescent property of AuNCs enables the direct visualization of BGN at both in vitro and in vivo levels for potentially bioimaging-guided therapy. Further in vivo results demonstrate that BGN-AuNCs hold enormous promise for infectious disease therapy and pro-regeneration, and the proposed supercharged interface engineering strategy is attractive for developing advanced functional nanomedicines.
更多
查看译文
关键词
bioactive glass,gold nanoclusters,infections,nanozymes,regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要