谷歌浏览器插件
订阅小程序
在清言上使用

Functionalization of Carbon Electrodes with Nanotitania by Atomic Layer Deposition

Advances in materials science and engineering(2022)

引用 0|浏览3
暂无评分
摘要
Carbon fibers are materials with a very high surface area and are interesting for applications such as filters, fire-resistant heat insulation, photocatalysis, and capacitor electrodes. Moreover, thermal burnout can easily remove these fibers, making them ideal templates for high-precision coatings or keeping them within the coated structure, generating nanostructured composites. In this work, two different substrates, carbon felt and bacterial nanocellulose were coated by TiO2 with atomic layer deposition (ALD). After deposition, the templates were pyrolyzed or further removed by burnout in the air. The microstructure evolution of the 3D interlocked-fibers structures was characterized by scanning electron microscopy and nitrogen adsorption surface area after each step. Stable anatase was present as a single TiO2 phase even after heat treatment at 800°C. Moreover, electrochemical impedance spectroscopy and constant current charge-discharge were employed to investigate the electrochemical properties of the samples. Our results show that all samples display a uniform layer after ALD and that the surface area decreases with an increasing number of ALD cycles. After burnout, the 3D structures presented a straw-like appearance to the shells. Nonetheless, both samples presented a power density comparable to a porous NiO/C, with the pyrolyzed bacterial nanocellulose sample displaying a higher pseudocapacitance performance than the carbon-felt samples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要