Effects of metal layers on chemical vapor deposition of diamond films

JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS(2022)

引用 0|浏览6
暂无评分
摘要
Diamond is recognized as one of the most promising wide bandgap materials for advanced electronic applications. However, for many practical uses, hybrid diamond growth combining metal electrodes is often demanded. Here, we present the influence of thin metal (Ni, Ir, Au) layers on diamond growth by microwave plasma chemical vapor deposition (MWCVD) employing two different concepts. In the first concept, a flat substrate (GaN) was initially coated with a thin metal layer, then exposed to the diamond MWCVD process. In the second concept, the thin diamond film was firstly formed, then it was overcoated with the metal layer and finally, once again exposed to the diamond MWCVD. It should be mentioned that this concept allows the implementation of the metal electrode into the diamond bulk. It was confirmed that the Ni thin films (15 nm) hinder the formation of diamond crystals resulting in the formation of an amorphous carbon layer. Contrary to this finding, the Ir layer resulted in a successful overgrowth by the fully closed diamond film. However, by employing concept 2 (ie hybrid diamond/metal/diamond composite), the thin Ir layer was found to be unstable and transferred into the isolated clusters, which were overgrown by the diamond film. Using the Au/Ir (30/15 nm) bilayer system stabilized the metallization and no diamond growth was observed on the metal layer.
更多
查看译文
关键词
diamond, CVD, metallization, iridium, raman, SEM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要