Ocean depth–temperature profiles for operational oceanography from a shark-borne transmitter

ANIMAL BIOTELEMETRY(2022)

引用 0|浏览2
暂无评分
摘要
Background Many regions of the ocean are under-sampled in terms of their biology and physical structure. Increasingly sophisticated animal-borne electronic tags are capable of measuring and transmitting in situ environmental data such as ocean temperature–depth profiles. This has the potential to significantly augment the volume of data acquired from under-sampled regions of the ocean. These data would enhance interpretation of animal behavior and distribution and could be used to inform oceanographic and meteorological models. Building on results obtained from marine mammals and turtles, we present a case study of depth–temperature profiles obtained from a tagged tiger shark. Results During a 102-day deployment, 1350 geolocations were obtained from a shark from waters around Oahu, Hawaii. Of these, 520 were associated with depth–temperature profiles—some of which were from depths exceeding 500 m. Delay between profile creation and transmission to satellite or land-based receiver averaged 8.9 h (range: 35 s–43 h, median 6.32 h). The profiles were in close agreement with profiles extracted from nearby locations in an operational ROMS model. Land-based receivers played a significant role in augmenting data throughput obtained via satellites. Conclusions Shark-borne transmitters offer a viable option for collecting ocean profiles with reporting latencies that make them suitable for operational oceanography. They can significantly increase sampling frequency (especially subsurface) and sample geographic areas that are otherwise difficult to monitor with Lagrangian methods such as Argo floats. They sample locations and depths that are important to the animal and which in some cases may be biological hotspots. The resolution of the data is comparable with that derived from traditional platforms. By targeting appropriate species of shark, different areas of the ocean could be monitored at significantly higher rates than is currently the case.
更多
查看译文
关键词
Satellite telemetry, Sharks, Ocean profiles, Electronic tags, Animal-borne instrument
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要