谷歌浏览器插件
订阅小程序
在清言上使用

Toward Foundational Deep Learning Models for Medical Imaging in the New Era of Transformer Networks.

RADIOLOGY-ARTIFICIAL INTELLIGENCE(2022)

引用 7|浏览11
暂无评分
摘要
Deep learning models are currently the cornerstone of artificial intelligence in medical imaging. While progress is still being made, the generic technological core of convolutional neural networks (CNNs) has had only modest innovations over the last several years, if at all. There is thus a need for improvement. More recently, transformer networks have emerged that replace convolutions with a complex attention mechanism, and they have already matched or exceeded the performance of CNNs in many tasks. Transformers need very large amounts of training data, even more than CNNs, but obtaining well-curated labeled data is expensive and difficult. A possible solution to this issue would be transfer learning with pretraining on a self-supervised task using very large amounts of unlabeled medical data. This pretrained network could then be fine-tuned on specific medical imaging tasks with relatively modest data requirements. The authors believe that the availability of a large-scale, three-dimension-capable, and extensively pretrained transformer model would be highly beneficial to the medical imaging and research community. In this article, authors discuss the challenges and obstacles of training a very large medical imaging transformer, including data needs, biases, training tasks, network architecture, privacy concerns, and computational requirements. The obstacles are substantial but not insurmountable for resourceful collaborative teams that may include academia and information technology industry partners.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要